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1 SUMMARY

This report briefly describes the research carried out by faculty and grad-
uate students of the Department of Electrical Engineering at the University
Minnesota under grant AFOSR AF/F49620-92-J-0134. The principal investiga-
tor for this research was Prof. Ahmed H. Tewfik. The period covered in this
report is February 1, 1992 to January 31, 1993.

The baric goal of this grant was to study the role that wavelet theory can
play in information representation and extraction. We focused our attention
primarily on surveillance applications. As part of our research, we studied two
problems that arise in surveillance. The first problem was that of determining
the directions of arrivals of a set of plane waves in the presence of a background
noise of unknown correlarion structure. The second problem involved selecting
an optimal set of N waveforms, with N fixed, to obtain the best reconstruction
of a distributed range-Doppler target reflectivity function.

We established that the correlation structures of the wavelet transforms of
the outputs of an array of sensors due to plane waves and these due to wide
classes of background noise are different. We constructed a method that exploits
these differences to estimate the directions of arrival of the plane waves. We also
demonstrated the feasibility of this approach and its superiority over traditional
approaches using numerical simulations.

We showed that the most accurate reconstruction of a range-Doppler target
density that can be computed from N waveforms and their echoes is obtained
by transmitting the singular functions corresponding to the N largest singular
values of two kernels derived from the target density. The singular functions are
valid wavelets that obey an additional orthogonality constraint in the frequency
domain. Using this result, we proposed a solution to the problem of choosing
a set of N waveforms to reconstruct with high accuracy an arbitrary unknown
target range-Doppler density function.

We also studied two signal representation problems. Specifically, we investi-
gated the completeness of an arbitrary sampling of a redundant dyadic wavelet
transform. We gave a necessary and sufficient condition for the completeness of
any such representation of any discrete time or space finite data length signal (in-
cluding dyadic wavelet transform extrema and zero-crossings representations).
We showed that completeness depends only on the locations of the retained sam-
ples of the dyadic wavelet transform. Our completeness test is more convenient
and easier to verify than previously derived tests. Furthermore, we explained
why some conclusions reported in the literature hold for most signals except for
some extreme cases. We showed how to ensure the completeness of the repre-
sentation by adding additional information in those cases where the sampled
dyadic wavelet transform domain representation is incomplete. We also studied
the numerical staL.liiy of such a representation. The stability issue is important
in the sense that a numerically unstable representation is useless from a practical
point of view. We described a fast fast Fourier transform (FFT) based recon-
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struction algorithm from such a signal representation. This work is important
in that it provides us with the theoretical tools that we need to further study
efficient and highly adaptive signal representations. Such representations can
lead to fast processing algorithms and more powerful signal coding algorithms.

Finally, we studied another wavelet based signal representation procedure.
Our aim was to understand how discrete orthogonal non-redundant wavelet
representations (as opposed to the redundant dyadic representations mentioned
above) can be adapted to a given problem by minimizing a cost function (e.g,
bit rate in coding or number ol flops required to implement a detector in radar
detection) subject to satisfying a second constraint (e.g., the quality of the en-
coded waveform or a fixed probability of detection and a maximal probability of
false alarm). We chose to study this problem in the context of high quality low
bit rate audio coding. Our results extend however to other similar problems.
e.g., the design of near-optimal radar waveform detectors of minirnal complex-
ity. We showed that the regularity property of wavelets is important in coding
applications. We also established that adapting the selection of the analysis
wavelet to Lhe underlying signal can lead to great reductions in bit rate. Our
main contribution was !o construct a procedute that exploits the masking effect
in human hearing by properly choosing the analysis wavelet in a dynamic and
adaptive manner. Our procedure has le:td to a high quality audio compression
procedure that, for a given quality, can achieve lower bit rates than the MPEG
audio standard.

In the following section, we present a brief introduction to wavelet theory.
Next, we summarize the results that we have obtained. A list of publications
supported in part by this grant is also included,

We are continuing our research in the areas discussed in this report with
funding from AFOSR under grant AF/F49620-93-1-0151DEF.
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2 WAVELET TRANSFORMS

2.A Introduction

Signal transforms have become a powerful tool in system theory and sig-
nal processing. In a typical transform, a signal of interested is expressed as a
weighted superposition of a countably infinite set of basis functions ("discrete
transforms") or as a weighted integral of a particular function ("continuous
transforms") Examples of discrete transforms of include Fourier series expan-
sions of periodic functions and Karhunen-Loeve representations of stochastic
processes over a finite interval. The best known continuous transform is of
course the continuous time Fourier transform.

While known transforms are extremely useful in various applications (e.g..
Fourier transforms are the basis of system and modulation theories, Karhunen-
Loeve expansions are used in pattern recognition and detection and estimation
theories) they do suffer from a number of disadvantages when applied to cer-
tain problems. For example, the computation of a Karhunen-Loeve expansion is
an expensive operation as it involves solving an eigenvalue-eigentunction (vec-
tor) problem. Furthermore, most transforms yield information about the sig.ial
which is not localized in time, e.g. the Fourier transform or coefficient of a sig-
nal does depend on the value of the signal over its entire support. This implies
that coefficients may be wasted to represent the signal over intervals where it is
identically zero, transforms change if the support of the signal changes or more
data is acquired and it is difficult to relate the local behavior of a signal to its
transform.

To address the above mentioned drawbacks, researchers have recently pro-
posed the wavelet transform as a fast technique for studying the local behavior
of a signal'. The idea behind this new transform is that if one wants to study
the local behavior of a signal, one has to implicitly window the signal and focus
on the resulting signal slice. Short windows will of course lead to high resolution
in the time domain and lower resolution in the frequency domain. On the other
hand, long windows provide high resolution in the frequency domain and low
resolution in the time domain. To gain a certain degree of freedom in trading
time versus frequency resolution one may then want to use windows of different
support lengths. However, such windows should be properly constructed to en-
able the user to relate the results obtained with the various analysis windows.
The solution adopted in wavelet transforms is to use dilates of a single properly
constructed window.

This section is organized as follows. We begin with a review of continuous
wavelet transforms. The focus in that sub-section is on the ability of the wavelet
transform to trade time and frequency resolutions in a specified manner. This
property of the wavelet transform is emphasized in applications that require

1 Ailthough the formalization of the wavelet transform and the study of its properties is
new, the idea behind it is not new. See, e.g. [9], [101.
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time-frequency representations of an underlying signal. We then shift, our at-
tention to discrete orthogonal wavelet transforms. This class of transforms is
non-redundant and has been found to be most useful in signal processing ap-
plications. In particular, we will discuss the construction of discrete orthogonal
wavelets and the computation of the discrete orthogonal wavelet transform of a
given signal. We will emphasize in that part of Section 2 the issue of regularity
of the analyzing wavelet and the effect of that regularity on the structure of the
wavelet transform of broad classes of signals.

2.B Continuous Wavelet Transform

In a continuous wavelet transform, one attempts to express the signal f(t) in
terms of translates of dilates of a single function V,(t) where the weight given to
each translate and dilate is proportional to the inner product between f(t) and
that particular translate or dilate. Assuming for the moment that f(t) has finite
energy and that Vk(t) is a suitable wavelet function then f(t) can be written as
[25], [37]

f(() J j vsF(s, u)l(s(t - u))duds (2B.1)

where C., is a finite constant and F(s,u) is the wavelet transform of f(t) and
is given by

Fts, u) = vfs f(t)ý,(s(t - u))dt. (2.B.2)

The variable s in the above equations is the "scale" variable because it controls
the effective width of the support of ¢(t). The variable "u" has the dimension
of time and gives the amount by which Vb(st) has been translated in the time
domain.

Since (2.B.1) must hold for any finite energy signal f(t), •(t) cannot be an
arbitrary function. By taking the Fourier transform of both sides of (2.B.1) it
becomes clear that we must have

I1((il)2 ds > 0 V4,;, (2.B.3)

where '(w) denotes the Fourier transform of 0(t). (Otherwise we may not be

able to represent functions that have energies at frequencies where the integral
in the above equation is zero.) In fact, the wavelet ;i(t) is chosen such that

S1*( )12d
0<C= < Ods < oc. (2.B.4)

Note that by making a change of variable of integration in (3.4) we may also
express Ck. as

Q=. 1€(w)12 d. (2.B5)
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Eqs. (3.4) and (2.B.5) implies that *(w) is zero at w = 0 and must decay
fast enough as w tends to 0. This is condition is intuitively pleasing: the only
frequency that is not affected by division by the scale s is w = 0. If W(O) # 0
then all dilates of io(f) would contribute to DC (w = 0) leading to an infinite
concentration of energy at w = 0.

By using (2.B.5) one can also show [25] that the wavelet transform is energy
preserving, i.e. one can establish the following "Parseval Theorem" like result

j0 f 0IF(s, u)12dsdu = Co j If(t)12d. (2.B.6)

Equation (2.B.5) provides a "recipe" for constructing wavelet functions '(0).
Specifically, to construct a wavelet 0(t) one can start with any finite energy
function 0(t) such that its Fourier transform $(w) is bounded and decays to
zero faster than ,,P+l for some integer p as w tends to infinity. One can then
take *(w) = (jw)P((w). This is illustrated in Fig. 1 where we have chosen
0(f) to be a zero-mean Gaussian function of variance equal to unity and the
corresponding P(t) is taken to be the second derivative of the Gaussian, a choice
that is popular in the computer vision literature.

Note that wavelets constructed using the above recipe will have p zeros at
w = 0 and hence will have p vanishing moments, i.e.,

f'ý I' O(t)dt = 0, m = 0,1,2T. .. ,p - L(2. B. 7)

This in turn implies that if the signal f(f) is smooth enough then

1
JF(s, u)I < C-L (2.B.8)SIP

for some finite constant C that depends on Vl,(t) and f(t). Thus, for such smooth
signals. most of the energy in F(s, u) will appear at lower scales,

Now let us assume witnout loss of generaiity that tie support of il(t) il
centered around the origin Denote by a, the variance of ti(t) in !he time
domain, i.e.

fc. = 1 2ý2(t )dt
a f•-o 2 2 (t)dt (2.B.9)

Furthermore, assuming that vf(t) is real we have I1(ý)j = TI'(-w')!• Denote hl
7 and a. the center of the pass- band of the Fourier transform %J(w) of ?",(t) in
the frequency domain and its variance around 7, i.e.

f (2.B.10)

2 = for- I T (w)12  (2.B,11)
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Figure 1: Example of a wavelet function
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Clearly, F(s, u) is mainly affected by the behavior of f(t) in the time interval
[u - 2a,/s, u + 2a,/s]. On the other hand, by Parseval's theorem, F(s, u) may
also be :ewritten as

1 () (2-B.12)

where .T(w) denotes the Fourier transform of f(t). Hence, F(s, u) is also mainly
affected by the behavior of Y(,) in the time interval [s(; - 2aw,). s(W + 2a,)].
In particular, for large values of s, F(s,u) carries information about f(t) that is
essentially localized in the time domain whereas for small values of s, it carries
information about 7F(w) that is localized in the frequency domain.

Observe also that the wavelet transform (2.B.1) is effectively a mapping from
1- D functions to 2-D functions. Since there is no one-to-one correspondence
between all 1- D finite energy and all 2-D finite energy functions, we should
expect F(s,u) to be redundant, i.e. to actually be in a subspace of all finite
energy 2-D functions. This turns out to be the case. In particular it may be
shown that any valid wavelet transform F(s, u) must be left invariant by the
application of a particular operator with kernel K(s, s'; u, u'), e-g..

F(s', u') = F(s. u)K(s.s'; u. u')duds (2 B 13)

where the non-invertible operator K(s, s': u, u') is given by

K(s,s',u. ui) d J dt sv7,(s'(t - u'))i(s(t - u)), (2.B.14)

While in general signal processing applications this redundancy may not be
desirable, it may be useful in certain applications.

In the next subsection we shall derive a non-redundaut wavelet transform by
sampling F(s. u) on an appropriate grid for a more restricted class of wavelets
0(t). The advantages of using the redundant transform developed here over
the non-redundant one are that one can use wavelets from a much wider class
and ti:at one can tolerate larger quantization or round-off errors in representing
F(s. u! while guaranteeing that the reconstructed signal f(t) has a relative error
of norm smaller than that in the quantized version of F(s, u). A complete theory
of redundant representation similar to the continuous transform given here is
described in [18].

Fig. 2.b illustrates the wavelet transform of the function f(t) given in Fig.
2.a computed with respect to a wavelet with five vanishing moments Note that
the local extrema of the wavelet transform at the various scales correspond to
points of discontinuity ofthe function f(t) or of its derivative. This can be easily
explained as follows. Let us assume for simplicity that the support of v,(t) is
finite and that ,(t) has 1' vanishing moments. Let us also assume that away
from it- points of discontinuity the signai f(l) is a piece-wise smooth function.

9



In particular, we assume that we can expand f (t) in the neighborhood of t = uo
between two points of discontinuities of f'(t) in a p- term Taylor series expansion.
Now note that for large values of the scale parameter "s" the support of ,t,(st)
will be small and F(s, u) will be determined by the values of f(t) around the
point u0. In particular, if we substitute the p-term Taylor series expansion of
f(t) in the integral that defires F(s, u) and use the fact that i(t) has p vanishing
moments we find that JF(s,u)I will decay at the rate of l1sP in the vicinity of
u = UO. On the other hand, if the neighborhood of size equal to the support of
k(st) around u = u0 contains points where f(t) is not smooth enough then this
rate of decay will not hold.

The fact that extrema of wavelet transforms correspond to points of discon-
tinuity of f(t) has been used in [38] to register signals. It is also shown exper-
imentally in that reference that certain types of signals can be reconstructed
from the extrema of their wavelet transforms. We will discuss this point further
in the next section.

2.C Sampling the Wavelet Transform

As mentioned above, a valid wavelet transform F(s, u) is left invariant by the
application of the kernel K(s, s'; u, u'). This is similar to bandlimited signals
which are also left invariant by ideal low pass filtering,

The redundancy present in a bandlimited signal can be exploited to obtain
more efficient representations of the signal (721. For example, a familiar result
is the a bandlimited signal is uniquely determined by its samples taken on
a suitable grid. Similarly, it is by now well known that almost all bandpass
signals of bandwidth less than one octave can also be constructed from their
zero-crossings [35].

It is natural to ask whether one can exploit the redundancy in a wavelet
transform in order to derive more efficient transforms. The answer to this
question turns out to be yes. We will discuss one such possibility in this section
based on the extrema of the wavelet transform. In the next section. we discuss
another non-redundant representation that is based on a judicious sampling of
the continuous wavelet transform.

2.C.1 Reconstruction of a Wavelet Transforms from Its Extrema

As mentioned above, Logan [35] has shown that any signal f(t) that does
not share any zero crossings with its Hilbert transform can be reconstructed
from its zero crossings. Now recall that the wavelet transform of a signal f(t)
at a given scale fixed scale s may be interpreted as the output of a filter of
impulse response v'(-st) driven by f(t). It then follows from Logan's results
that if qi(") is chosen to be non-zero only over the interval 7r < .J < 27r for
example, F(s, u) can be reconstructed at each scale s from its zero crossings.

10
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Figure 2: Example of a continuous wavelet decomposition. The original signal
is shown in Fig. 2.a. The wavelet transform at various scales is shown in Figs-
2.b-2 1 Fig. 2.b corresponds to the finest scale and 2.f to the coarsest scale.
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Unfortunately the above characterization is unstable in that a small error
in the actual location of the zero crossings may lead to large errors in the
reconstructed function F(s, u). Furthermore, it is difficult to relate the location
of the zero crossings of F(s, u) to the local behavior of f(t) when *J(,•) is chosen
as above.

The latter difficulty may be circumvented by picking wavelets that have a
large number of vanishing moments. It is then possible to relate the rate of de-
cay of F(s, u) to the local behavior of f(t) (and in particular its local regularity
as captured by its local Lipschitz exponent [281). To stabilize the reconstruction
several researchers in computer vision have suggested using additional informa-
tion such as the gradieat of the wavelet transform [271 or the value of the integral
of the wavelet transform between two consecutive crossings [38].

Motivated by the fact that in practice only samples of the signal f(t) are
available for processing, Mallat [38] has also formulated a discrete signal re-
construction problem in which the goal is to reconstruct an N A 2J point
discrete time sequence from the extrema of its wavelet transform at scales 2'.
j = 0, 1,.---, J - I and its approximation at scale 1. (The given partial wavelet
information is not necessarily complete, i.e. it need not correspond to a unique
signal.) An iterative algorithm is given in that same reference for solving this
problem. The algorithm performs a sequence of alternating projections onto the
set of valid wavelet transforms and that of 2-D functions that have the given
extrema. It was shown to converge experimentally but no theoretical proof of
its convergence was given.

A second iterative algorithm for solving this problem was presented in il 1.
This algorithm differs from that of [38i in its choice of the sets onto which
projections are performed. In particular, the sets it uses are closed and convex
a property that guarantees the convergence of the algorithm. We will discuss
this problem further in Section 3.C where we describe our research in the area
of sampling dyadic wavelet transforms,

The practical importance of the results described above is that they pave
the way for the development of novel techniques for separating mixed signals
Specifically, it may be possible to separate two signals from an observation Df
their sum as long as the two signals have different local Lipschitz behavior.
This may be done by computing a wavelet transform of their sum and then
attempting to estimate the locations and magnitudes of the extrema of the
wavelet transforms of the signals using the additional a priori knowledge about
their local Lipschitz properties. Several studies that are based on variations of
this idea are currently being pursued by different research groups

2.D Discrete Orthogonal Wavelet Orthogonal Transform

A second approach to eliminate the redundancy in the continuous wavelet
transform consists in sampling that transform. In [17], Daubechies proposed to
sample the scale parameter s on a grid {a' }7co. According to the discussion

12



in Section 3.B, the sampled transform F(ai,u) is the output of a bandpass
filter centered at aU and with a root mean square bandwidth of ala. Hence,
we should be able to reconstruct F(ai, u) viewed as a function of u from its
samples taken on the grid {n3/a}j'1n=- as long as 8 is chosen appropriately.
Daubechies studied the problem of choosing a and 3 to obtain a non-redundant
and complete representation. She showed that certain choices of (a, 3) lead to
a non-redundant and yet complete representation.

A valid choice for the pair (a, 3) that has received considerable attention
is (a,#) = (2, 1). In particular, it is shown in [17] that any square integrable
signal admits the decomposition

f(A) = EEV2b(j;m)V,(2jt-m) (2,D.1)
j M

b(j; m) = v'2I f(t)iU,(2't - m)dt, (2-D.2)

where 10(t) is called a discrete orthogonal wavelet. The term "discrete" refers
to the fact that (2.D.1) is a sampled version of the continuous wavelet trans-
form. The term "orthogonal" refers to the fact that 0(t) is constructed to be
orthogonal to ah translates of its dilates 0(2it). Orthogonality of the translates
and dilates of 0(t) is not necessary but may be achieved by properly construct-
ing V,(t). The main characteristic of the discrete orthogonal wavelet transform
is that it is non-redundant, i.e., any sequence {fv/b(j; m)} that is absolutely
summable is a valid wavelet coefficient sequence.

2.E Construction of Discrete Orthogonal Wavelets

The wavelet 0(t) is not unique, but it is also not arbitrary. It must satisfy
certain conditions that insure that the expansion in (2.D.1) holds for any square
integrable function. The wavelet function, and corresponding scaling function,
can be constructed to be compactly supported [17]. In the sequel. we assume
that the wavelet is compactly supported.

The construction of the wavelet is based on the solution 0(t) of a two scale
difference equation (a dilation equation)

0(1) = E ck6(2t - k) (2.E.3)
k

where 4(t) is normalized so that

I 6(t)dt = 1 (2.E.4)

and 0(f) = 0 outside th-! interval [0, K - 1]. This normalization implies that
K-1

E ck = 2. (2.E.5)
k--1



Denote by O(w) the Fourier transforms of 0(t). By taking the Fourier transform
of both sides of the dilation equation (2.E.3) we obtain

0(21) = G(w)O(w) (2.E.6)

where

k

Equation (2.E.6) then implies that

O(w) = H'IG(-). (2.E.8)

(Incidentally, it is interesting to note also that the values of 0(t) for all
integers in tO, K - 1) may be computed by solving a simple eigenvalue problem.
Specifically, it may be shown by using (2.E.3) that the vector that consists of
samples of 0(f) at all integers in [0, K - 1] is the eigenvector of the matrix
G = c2i,-k] corresponding to its unique largest eigenvalue which is equal to one
[55]. The recursion

0(2) = O-' c€(n-_ - k)
k

then determines 0(t) at all dyadic points n/2j.)
The orthogonal wavelet Vb(t) is constructed from 0(t) as

Of) = dk0(2t - k) (2.E.9)
k

where

dk = (-1)kcj -k. (2.E .10)

To insure that the dilates and translates of the 0(t) are orthogonal we require
that

K-i

Sck_2n = 26om (2.E.11)
k=0

where 60, is a Kroneker delta function. This condition also insures that 0(21t-
m) is orthogonal to Vb(2't-n),j < m as long as G(w) has no zero in the interval
[-pi/3, ?r/3].

Another interesting property of the wavelet decomposition that is a direct
result of (2,E.9)-(2.E.11), is that (2.D.1) provides a multiresolution decomposi-
tion of f(1). Specifically, it, is a simple matter to show that as in the continuous
wavelet transform case, the coefficients {b(j; m)} carry information about f(t)
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near the frequency 2jZ and the time instant 2-im. For fixed J, the partial
sum = • fj,mVSTPb(2it - m) provides an "approximation" to f(t) up

to scale 2F. The approximation is essentially a low pass filtered version of f(1)
approximately bandlimited to 2Vz. Furthermore, the approximation to f(t) up
to scale 2V can be written in terms of translates of O(2't), i.e.

Z VV/-fimtk(2jt-m) = a,./V-J(2't-m) (2. E. 12)
fF---- 1 m

aj,m = V-j1 f (t),0(2't - m)dl.(2.E.13)
00

The difference between the approximations at scales 2j and 2J+1 is the "detail"
of the function at scale 2' and is given by the sum Zm b(J; rn)v(2jt - M)r In
particular, we may rewrite (2.D.1) as

m=--C j=J m=-oc

(2.E.14)

An example of a wavelet which satisfies the condition (2,E.5) and (2E.I1)
is given by the Haar wavelet. The Haar wavelet corresponds to the scaling
function that satisfies

1 0 < tQ <I
0(t) = 0 otherwise

The wavelet itself is then equal to

1 0 <ft<1/2
0(t)= -1 1/2< t<lI

0 otherwise

Multiscale analysis using Haar wavelet exhibits good time localization but
frequency localization is very poor. In other words, in the decomposition (2.D.1)
the coefficients b(j; m)'s decay very slowly to zero. Hence the conditions (2.E.5)
and (2.E.1 1) are not enough to construct useful wavelets because they may lead
to wavelet decompositions with not enough regularity. When f(f) is a generic
smooth function and V,(1) has a finite support, then as n tends to infinity the
integral f f(t)ý'(nl) dt is O(n-P-') if and only if the first p moments of V)(1) are
zero, i.e.

j tm0(1)dti = = 0,1,..,p- 1. (2.E.15)

15



It may be shown that imposing the additional requirement for V,(t) to have p
vanishing moments is equivalent to

K-i

(-I)kk'ck = 0 m = 0, 1,-. ,p - 1. (2.E.16)
k=O

This requirement also implies that for any smooth function f(t), 0(t) and its
translates approximate the function with accuracy 2-P, i.e.

11f(t) - E akO(2jt - 0)1 :- a2-j'lf"(P)Jf for suitable ak (2.E.17)
k

where a is independent of f(t). Note that this means that any polynomial of
order less than p can be represented exactly using translates of 0(t) as long
as (2.E.16) holds. This in turn implies that the multiresolution representation
given by (2.E.14) can actually be used to decompose spaces larger than LP(RZ)
In particular, any function of polynomial growth up to order p - I may be
represented as in (2.E.14) even though such a function is not in L2(JZ).

Condition (3.12) is an essential property of wavelet decompositions as we
will see in this section which discusses applications of wavelet analysis in signal
processing. Fig. 3 - Fig. 4 show examples of scaling functions and wavelet
functions with various number of vanishing moments.

2.F Computing Discrete Orthogonal Wavelet Decomposi-
tions

The wavelet decomposition given by (2.E.14) can be computed recursively in
scale space [37]. The procedure of [37] is based on the fact that the coefficients
{ck/v'_} and {dk1/v2J may be viewed as the impulse responses of a pair of finite
impulse response conjugate quadrature mirror filters. Note that (2.E.3) implies

k

= Z ck_2,,,(2jt- k). (2.F.1)
k

It then follows that

a(j - 1;m) ' v--(fr(t),0(2j-)1 - m)) = C-j k -2i (j; 4 (2.F.2)

Similarly, using (2.E.4) we obtain

(j - 1; M) Z-, /vT•-,(f(f), v(21-'t- m)) = - dk-2&.Cj:'i k). (2.F.3)
v12
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Figure 3: Scaling function and wavelet for p = 2
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Figure 4: Scaling function and wavelet for p = 4
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The multiscale decomposition (2.F.2) - (2.F.3) can be implemented using filters
whose impulse responses are g(n) = c.-/'4V and h(n) = d-.,/v- followed by
decimators as in Fig. 5. In Fig. 5 G(w) and H(w) are the discrete Fourier
transforms of g(n) and h(n) respectively.

Note that in practice one is given samples of a function f(t) at a given scale
2' . If J is large, those samples may be viewed as the coefficients a(J; m) in an
approximation E.. a(J; mn)0(2't - m) of some function f(t) at scale 2V Then a
wavelet decomposition of f(t) may be computed recursively as shown in Fig. 6.
Specifically, the samples of f(t) are recursively low-pass and high-pass filtered
with the filters g(n) and h(n), and the filter outputs are decimated such that
only even-number coordinates are kept.

It may also be verified that the sequence {a(j; m)} can be reconstructed from
the approximation and detail sequences at the next coarser scale {a(j - 1; m))
and {b(j - 1;m)}as

a(j; m) = .-1- c,,,_,,a(j- 1;k) + JEdm_2 b(j - 1; k). (2.F.4)

The reconstruction (2.F.4) can be implemented by upsampling and filtering with
G*Gp,) ard H'(Fw) auq in Fig 7.

2.G Finite Data Length Discrete Orthogonal Wavelet Trans-

form

With a finite set of data, it is not possible to compute all a(j; m)'s and
b(j; m)'s exactly, particularly those that correspond to scaled and shifted wavelets
or scaling functions straddling the boundary of the interval. To handle this
problem one conventionally assumes that the data is periodic outside the ob-
servation interval. Suppose we are given a finite number, N = 2j, of data
{a(J;m)},m = 0,.- ,2j - 1, at finest scale J. Let a' and V denote 2i x 1
vectors composed of 2j point periodic approximation sequence and detail se-
quence at scale 2j. Let the 2j-' x 2J matrices Gj and Hj denote the matrix

representation of filtering the periodized data using g(n) and h(n) respectively.
Specifically, Gj and Hj are given by tGjlik = Ck-2i/v'2 and [Hjjik = dk-2,/,2

Note that since sequences {ck} and {dk} of length 2p are required to produce a
compactly supported wavelet with p vanishing moments [17], we are restricted
to use a wavelet with p number of vanishing moments such that 2 p _< 2 at scale
2', i.e. we have to use wavelets with a smaller number of vanishing moments at
coarser scales.

It may be shown that G and H. have the following properties:

G.GT HH I (2G1)

G.HT - H.GT = 0 (2G.2)
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Figure 6: Discrete wavelet decomposition
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GTGj + HTHj = I (2G.3)

With these filter matrices Gj and Hi, the finite data multiscale decomposition
may be expressed as

aj- =G jlg. (2.G.4)

Y-1 = Hj_laý (2.G.5)

GT aiI+HT b-' (2.G.6)
a l- -I-

where a_ and b' are 2i x 1 vectors given by

a' = [a(j;O),a(j;1),...,a(j;2 - I)]-

V = [b(jO),b(j i),...,b(j:2 - 1)]T.

From (2 G.4)-(2.G.6) we have

Aj = GT _ 0J-I + HTbi'
= GT GT J-2 + T HT b,.-2 + T b-

-- 1 GJ 2 a + -J lJ_ 2b + J-1

= GT GT GoTJo .+GGT GTHToTJ- _-.- a ,,1 10•_ +GT_I GTHTI-

+ bJ- . (2G.7)

Define

HT
J-1

HT GT
J-2 J-1

HT GT GT
Q = J-3 J-2"J-G 1  (2G.8)

HTGTGT GTo 1 2 J-1
HTGTGT ...GT

0 1 2" J-1

and

b1-I

b-2

bJ = (2.G.9)
bO

0o

aov



Then

aj = QTbJ (2G.,10)

and

bJ=a. (2TG.II)

From (2.G.1)-(2.G.3), it is clear that Q is orthogonal, i.e., QQT = QTQ = I1
Equation (2.G.11) implies that wavelet transform can be computed by a

multiplication of matrix Q and a data vector aj, hence we will call the matrix Q
the discrete wavelet transform (DWT) matrix. The discrete wavelet transform,
or multiplying a vector by matrix Q is more efficiently computed in the following
way

bj-I

S PJ - bý-] P J ._ 2 [ . ] P J _ 3 P 0 -J

(J-2 600

bj Q = P 0 (P 1 (P 2 (-(Pj_ 3  :)- )(2.G.12)

where

F_1 J-2 0 1 Pk 0

PG 3  PJ- 2  0 Hj-2 -k 0 Hj-kJ-=0 Gj_2 0 Gjk

where Im is an 2 ' x 2 ' identty matrix. If the analyzing wavelet has p vanishing
moments. Hj and Gj have 2p number of nonzero elements per row Hence the
number of multiplications for computing discrtte wavelet transform is approxi-
mately 4pN where N = 2', Note that the number of operations for computing
D\VT is proportional to A" whereas computation of FFT requires V logA N op-
erat ions.

2,H Generalization of Wavelet Decompositions

The connection between wavelet decompositions and 2 band perfect recon-
struction filter banks was briefly discussed in the above subsection. Since it is
possible to construct M-band perfect reconstruction filter banks, it is natural
to ask whether an M-band generalization of the wavelet decomposition (2 D 1)
exists. It turns out that the answer to this question is affirmative. In partic-
ular, it is shown in [74] (see also [69]) that any square integrable signal f(t)
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may be expanded in terms of a scaling function 0(t) and M - 1 M-band % avelet
functions as

0 UM-1 00 cc

M=-oo n=1 j=J m=-oc

(2-.H1)
The scaling function 0(t) obeys a two scale difference equation of the form

O(z) = E CL¢(MZ - k) (2.1H.2)
k

while the wavelet functions iP,,(z) are given by

tn(Z) =Zdnk0(Mx - k), n= 1,2, ,Al - 1. (2.H.3)

As in the 2-band case, the M - I wavelets ',d(t) are characterized by the fact
that they have p vanishing moments, with p > 1. i.e.

j ';vn(t)dt = 0 n = 0. 1, -p -1 (211)

Furthermore, all translates and dilates of the Al - I wavelets t-, (t) are mutually
orthogonal. Finally, we also have

M-1 J-I OC M

n=1 j=-c =-Co m=-oC

(2.H .5)
i.e. the M-band wavelet decomposition also induces a multiresolution decompo-
sition of L2(7,). A complete characterization of the coefficients {ck) and {d,,.k }
that lead to valid wavelets is given in t74]. The advantages of M-band wavelet
decompositions over the 2-band case are the additional degrees of freedom avail-
able to the designer in choosing the sets {ckl and {d,k.)} and the more compact
signal representations that generally result from the use of such decompositions.

Wavelet decompositions have also be extended to the M-dimensional case.
The simplest extension is mentioned in [37] and uses scaling functions and
wavelets that are equal to simple products of 1-D scaling and wavelet functions.
More flexible non- separable wavelets are discussed in [13], [331 and 167].
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3 MAIN RESULTS

The main objective of this research was to explore the role of wavelet the-
ory in signal and information representation and extraction. More specifically,
during the period February 1992 to January 1993 we studied two information
extraction problems: separating plane waves radiated or reflected by a target
from a background noise process with an unknown correlation structure and es-
timating a distributed range-Doppler target reflectivity map to within an error
of a given energy using a minimal number of radar probing waveforms.

Our goal in studying the first problem was to show that it is possible to
exploit differences in the structures of the correlations of the wavelet transforms
of the response of an array of sensors to plane waves and its response to wide
classes of correlated background noises. We succeeded in establishing this fact
and constructed an iterative method for estimating the directions of arrival of
plane waves mixed a background noise process with an unknown correlation
structure.

In the second prob!em, our aim was to investigate the role of wavelets in radar
imaging. Wavelets seemed to have a natural role in radar imaging. A wavelet
representation provides a decomposition of a signal in terms of translates and
dilates of a single waveform. On the other hand, the reflection process in radar
imaging induces a translation and dilation of the transmitted waveform. Our
work showed that the optimal set of waveforms that must be trai.,imitted to
obtain the best estimate of any range-Doppler target reflectivity function is a
set of N wavelet waveforms that are derived from the target reflectivity function
itself.

We also investigated two signal representation problems. The first prob-
lem was more theoretical in nature and invoked constructing a simple test for
the completeness of an arbitrarily sampled redundant dyadic wavelet transform
as well as a direct computationally efficient method for reconstructing a signal
from a complete arbitrary sampling of its dyadic wavelet transform. The second
problem was a transparent audio coding problem. The objectives there were to
establish that the regularity of wavelets is important in coding applications and
that dynamic adaptation of wavelets to the underlying signal can lead to sub-
stantial reductions in bit rate. Another goal was to study the general problem
of adaptively choosing an analysis discrete orthogonal wavelet to minimize a
cost function (e.g., bit rate in this application) subject to satisfying a given
constraint (e.g., quality of the encoded signal in this application).

In what follows we briefly summarize the results that we have obtained in
the period February 1992-January 1993. A more complete description of these
results can be found in several papers that will appear or have been submitted
for publication in the IEEE Transactions on Signal Processing and the IEEE
Transactions on Image Processing [53], [58], [59], [76]. Re-prints or pre- prints
of these papers are available from the principal investigator and from AFOSR.
Summaries of these papers have also been published in the proceedings of two
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conferences and a workshop [52J, (571, (62], [75],
We continue to perform research in the aboveareas and on two related prob-

lems (adaptive bearnforming and integrated target sensing and recognition) with
AFOSR support.
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3.A Wavelet Domain Array Processing

Most modern high resolution bearing estimation techniques assume that the
background noise process has a known covariance function. These techniques
tend to perform poorly in situations where the covariance structure of the noise
is unknown. To address these situations, several approaches have been proposed
in recent years, e.g., [34], [47], [45], [56], [70].Some of these techniques assume a
particular model for the noise process, e.g., an auto-regressive-moving-average
(ARMA) model. Others eliminate the effect of the unknown noise covariance by
assuming a least informative prior distribution for the noise covariance function.
In our work we derived an alternative approach. This approach requires only
that the spatial correlation function of the noise process decays asymptotically
to zero as the distance between samples of the noise tends to infinity.

For simplicity of exposition, we will assume here that the noise process and
a set of narrow band plane waves are sampled by a uniform linear array. Note
however, that the ideas described here can be applied as well to non-linear and
non-uniform arrays as well as to wide-band signals.

We shall denote by f(n) the output of the nth sensor in the array. Recall
that in an M-band wavelet decomposition a signal z(n) is decomposed using a
regular cascade of perfect reconstruction filter banks (c.f. Fig. 8). Each bank
consists of M filters H1(z), k = 0, i,.. . ,A - I. We will assume here that the
filters H&(z), k = 1,... , M - I have p zeros at : = 1. (Recall that each of these
filters must have at least one zero at - = 1.) Note that by using the "Noble
identities" of Section 2.B in [64) it follows that Fig. 8.a may be redrawn as in
Fig. 8.b. Following wavelet ternuinology, we shall call each of the signals xk(fl)
in Fig. 8.b the "multiresolution" component or the "detail" of z(n) in band
k. We also introduce a partial ordering of the outputs zk(n) by numbering the
analysis stages from left to right. We use the notation p(k) to denote the order
of the analysis stage in which xk(n) is computed. We shall then say that xk(n)
is a "higher resolution" component of z(n) than zk,(n) if p(k) < p(k').

Since the filters Hk(z), k = 1,... , A - 1, in Fig. 8 have at least p zeros at
z = 1, the filters Wk(z) that produce the details of f(n) will also have at least
p zeros at z = 1. Hence, if we use uyk(n) to denote the impulse response of the
filters Wk(z), we note that

Zmwk(m) =0 n = 0, 1,-.-,p- 1 (3.A.1)

We shall see in the next section that (3.A.1) will play a key role in obtaining
sparse representations for a large class of covariance matrices.
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Figure 8: A Two Stage M-band Decomposition
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3.A.1 Asymptotic Form of the Correlation Function of the Wavelet
Transform Coefficients of the Outputs of a Linear Uniform
Array

First, observe that the covariance R(m, n) of f(n) is a sampled version of
a continuous 2-D function R(i,s). Denote by Rlk(m,n) = E[fi(m)fk(n)] the

cross- covariance between the mth component of f(n) in the jth band and the
nth component of f(n) in the kth band. Observe that using the notation that

we introduced above we may express R30(m,n) as

Rk1,(mn) = E n(M')m- m',MP(k)n- n')wj(m')w&(n').
m'ESCj f'ESh

(3.A.2)

In (3.A.2) Sk is the support of the filter wk(n), i.e., the set of indices n for which
lwk(n)l # 0. Our objective is to study the asymptotic behavior of RJ'k(mn)
as max(m, n) tends to infinity while min(m, n) is finite and fixed. Without
loss of generality we will assume here that n = min(m, n) and is fixed while
m = max(m,n).

Assume now that all the partial derivatives ci+kR(t,s)/o0tkas1 of R(t.s)
exist for 0 < I ,k < 2p. Following a technique introduced in [42] to study
wavelet decompositions of operators and also used in [6], we first use Taylor's
theorem of the mean for smooth 2-D functions to write

R(MfPO)m - m', AfP(k)n - n')

_R(AP(j)m, MP(k)n) + E - ) +-' R,s) I= 9
[ M-49-+ (-n'-It s) --- M,(•))

+(-p)!, [(-M), + - a ]2 R(ts) s=MU)mnm' for some 0 < I <1

S= rft')n - on'

2p-+ 1 / " &(-vi)'(_n')'- R(t. s)
R(MPj)m, ) 8()sn)+, 7

i=l 1=0s M¢n

I 2p ( 2,,p ) (M)(,)p12 8R(t.s+2(mp(n ' 8's 2p' f = Mot,)m - 0in'
=-5-) 8 = M '()n - an'

for some C < 0 < 1. (3.A.3)

ir we substitute this expression into (3.A.2) and use the fact that the first p
mnoment.s of uj(nu) and uLk(n) are zero we obtain

1=0 m'ES, n'ES,
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sO2PR(t, s) I
(m',n') E S, X Sk i'8e

2
P-' = M - 0m,

0 E [0, 1) = M(h)n - #n'

SC sup 2 pR(,) (3.A.4)
-- ,n') iE S, x S-I &1a82p-1 I = MOOM - 0m,
0 E [0, 1] s = M*(0k)n -#'

I E{0, 1,-. 2p)

In the above equation C is a finite constant given by

C-2) = 1):''j(m) (' (' (3. A.5)
(2p) I

1=0 MIE• n'4E~f

Hence, as long as all terms , 0 < I < 2p, decay faster to zero than

jR(m, n)I itself as m tends to infinity (i.e. as long as Wim,._ Y.( p =,.

0,VI < 2p), Rk(m, n) will decay faster than R(m, n) as mn tends to infinity. In
particular, the multiresolution components of z(n) will effectively be partially
uncorrelated.

Consider now the case where R(m, n) behaves asymptotically as

R(m, n) = m*(t)e-,(n)m(ao(n) + o(l)) + aI(n) as m - oo. (3.A.6)

In the above equation the function O(n) may have both a real and an imaginary
part. However, its real part is assumed to be a non-negative and non-decreasing
function of n. Its imaginary part must be zero if its real part is zero. The
function o(n) is only assumed to be a non-increasing function of n. The class
of processes with covariance functions that behave asymptotically as (3.A.6) is
quite large. For example it includes all stationary processes that can be obtained
by passing white noise through a rational filter. The covariance functions of such
processes decay exponentially fast to zero for fixed n as in tends to infinity. It
also includes nonstationary process such as a sampled version of a fractional
Brownian motion [41]- [2] whose covariance function is given by

R(m, n) = VH(IM1 2H + Inl12 H - Im - nl12H), 0 < H < 1.

For fixed n, this covariance function behaves asymptotically as (3.A.6) with
O(n) = 0. The fractionally differenced white noise process [26]-[20] and samples
of the underwater background acoustic noise in shallow water taken along any
straight line [8] are other examples of nonstationary processes with covariance
functions that behave asymptotically as (3.A.6).

As m tends to infinity and since the sums in (3.A.2) are finite, we may
rewrite (3.A.2) as

Rjk(m, n) = ~ ~ n) 1: t w(m')
n'ESk, MIES,
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[(MPU)M- laM()-'e•M(~-'{')-'

(ao(MP(k)n - n') + o(1)) + a, (M•J)n - n')]}
(3.A.7)

where we have used (3.A.6). Recalling that R(#(.)) > 0, define the quantities
ao(MP(k)n) and fo(MP(k)n) as

,Oo(MPt)n) = #(MP(k)n - no) (3.A.8)

no E No = {n' E $, : (3(MP(k)n- n') = inf R(i(M k)n - n'))n'E$-

(3.A.9)

ao(MP(k)n) = sup c,(MP(k)n - n'). (3.A.10)
ne•p

When R(0o(M-*)n) 4 0 it may be readily verified that

lir IR•,k(m, n) = co(MO(k)n),MOCOM--0 [(Mpfj)M)oo(MO(I)n)e--lOotf•o(Mn))(M'(')rn))]

(3.A.11)
where

co(MP(k)n) = I E w(n')wj(m')et(MD(&)n-n')m'a(Mp(k)n- n')l
W'EN. m'ES,

(3.A.12)

= {n' E N : a(MPk)n - n') = sup a,(MP(k)n - n')}.(3.A.13)

This of course implies that IRjk(m, n)l decays asymptotically as (M '()M)*o(M'(k )1

e-!(o(MP'(k)n)M"(2)m). Since 0(.) and a(.) are non- decreasing and non-increasing
functions of their arguments respectively, this also means that IRJk(m, n)l de-
cays asymptotically to zero at a rate much faster than R(m, n).

On the other hand, when 0(n) = 0 identically in (3.A.6), it may be verified

using (3.A.1) that

lim IRP:k(m, n)I = ce(MP'k)n), (3.A.14)

M'O)m--oo (Mp(i)m)ao(MD"*)n)-P

where

-o(M•(k)n) = sup c,(MP()n - n) (3.A.15)
n'E.,q•

Ci(MP(k)n) = ao(ao- 1). .. (cko - p+ 1) Z (n') E (M')
32MES,

jmYj 1+ IDm' j) _P jao(MPt&)rz -.

(3.A. 16)
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Note that in this case as rn tends to infinity, R(m, n) may either decrease
hyperbolically (instead of exponentially) fast to a constant which may be a
function of n. It may also increase without bound. However, according to
(3.A.14) RJk(rn, n) decreases to zero asymptotically as rrz°(M'(" n)-P as long as
ao(.) < p. In particular, R),k(M, n) decreases once more to zero asymptotically
at a rate much faster than R(m,n).

Finally, observe that if R(m, n) consists of oscillatory components, both a(n)
and 0(n) in (3.A.6) will be zero. In this case, the wavelet transform does not
decorrelate the process.

The observations that we have made here are illustrated in Figs. 9.a and 9.b.
Fig. 9.a shows the magnitude of the entries of the correlation matrices of the 8-
band wavelet coefficients corresponding to five uncorrelated sources of powers -
17 dB, -2.8 dB, -23 dB, -6.38 dB and -6.38 dB (relative to the total noise power)
impinging respectively at 45', 700, 75', 850 and 900 on a 64 elements uniform
linear array with inter-sensor separation of A/2. On the other hand Fig. 9.b
shows the magnitude of the entries of the correlation matrices of the 8-band
wavelet coefficients of a 2 pole AR background noise process. The poles of
the process were at 0.96e--i 120

7 and 0.7eJ1/2 . Their respective powers were
-27 dB and -0.0087 dB relative to the total noise power. This noise process was
constructed by Dr. N. Owsley from NUSC. It is a good model for the background
noise observed in the ocean in a particular set of experiments. Observe that the
correlation matrix of the wavelet transform of the signal part consists of plateaus
while that of the noise consists of line structures .

3.A.2 Wavelet Domain Bearing Estimation in the Presence of Cor-
related Noise of Unknown Structure

The bearing estimation approach that we proposed is based on the results
that we described in Section 1.A.1. It consists in computing an estimate of
the correlation matrix of the NI-band wavelet coefficients corresponding to the
noiseless sensor outputs. The procedure begins by estimating the correlation
matrix of the M-band wavelet coefficients corresponding to the noisy sensor
outputs using an average of the outer products of vectors of the Mk-band wavelet
coefficients corresponding to several snapshots of the sensor outputs. Next, we
zero the entries of the estimated correlation matrix that lie along any observed
linear structure. These linear patterns can be parts of diagonals or slanted
diagonals, They are easily detected using image processing techniques. The
above step essentially cancels the contribution of the noise correlation matrix
to the computed wavelet domain correlation matrix.

Denote by R, the autocorrelation matrix corresponding to the wavelet co-
efficients of the autocorrelation of the plane waves. One is then left with a
perturbed version of the matrix R, with missing entries, The perturbation is
a function of the number of snapshots used, the signal-to-noise ratio (i.e. the
accuracy with which the correlation matrix of the M-band wavelet coefficients
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corresponding to the sensor outputs is estimated) and the degree to which the
M-band wavelet decomposition decorrelates non-time-synchronous wavelet co-
efficients of the noise process. By computing the eigenvectors corresponding
to a set of smallest eigenvalues of the matrix R, with missing elements and
by using the inverse wavelet transform of the corresponding eigenvectors in an
eigenstructure based technique (e.g. MUSIC, ROOT MUSIC, etc. [1]), one is
then able to compute a preliminary estimate of the frequencies of the line spec-
trum or the directions of arrivals of the plane waves. Note that at this stage it
may not be possible to resolve all sources. Using those estimates, one then com-
putes estimates of the entries of R, which had been zeroed. These estimates are
then used to fill the zeroed entries of the estimated wavelet correlation matrix
and the procedure is repeated on the resulting matrix. The whole process is
repeated until convergence. A flow chart of the procedure is given in Fig. 10.

The procedure implicitly solves a non-linear least squares fitting problem.
It can be shown that it is guaranteed to converge to a local minimum. It is ini-
tialized with a guess obtained using any of the traditional approaches together
with any other information that may be obtained by looking at the structures of
the plateaus in the correlation matrix of the wavelet domr'n data. Experience
has shown that such an initialization leads to good results. The procedure was
compared to more traditional approaches in a number of scenarios including the
one described at the end of Section LA.l. In that scenario, none of the tradi-
tional approaches was able to detect the sources at 45* and 750 even when exact
correlation matrices are used. On the other hand, the proposed approach was
able to detect all sources when exact covariances were usee or when more than
20 snapshots were assumed to be available. Fig. II shows the results obtained
in another scenario using a simpler version of the proposed procedure in which
positions of the entries which are zeroed is prefixed to be the main diagonal
and some slanted diagonals regardless of where the linear structures appear.
The exact source location are marked with tics on the plots. Each simulation
(one curve on the attached plot) assumes that 100 data snapshots are available
for processing. Note that MUSIC detects one source and is unable to resolve
two others. The simplified version of our procedure is able to resolve these two
sources but cannot detect the other two weak sources. The full technique is
needed to detect these latter two sources.
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Figure 9: Magnitude of the Entries of the Correlation Matrix of the Wavelet
Coefficients Corresponding to : (a) The five sources at45*, 700, 750, 850 and 90'
(b) BackgroundNoise.
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3.B Optimal Radar Range-Doppler Imaging

The main contribution of our work in the area of radar imaging was to show
that the most accurate reconstruction of a range-Doppler target density that can
be obtained using only N waveforms and their echoes results from transmitting
the singular functions corresponding to the N largest singular values of two ker-
nels derived from the target density. These singular functions are valid wavelets
that obey an additional orthogonality constraint in the frequency domain. We
have used this result to develop a solution to the problem of choosing a set of
N waveforms to reconstruct with high accuracy an arbitrary unknown target
range-Doppler density function.

Note that in practice the important question is how to construct the most
accurate approximation to the range-Doppler target density by illuminating the
target for a maximum of T seconds. This problem is related to the one that
is addressed here since the N waveforms will have a total duration equal to
the sum of their individual durations plus the duration of all silence intervals
separating the waveforms. The length of these silence intervals is determined
from a coarse a priori knowledge about the support of D(z,ry). If the radar
selects the transmitted waveforms from a fixed library based on the approach
presented here. the individual durations would be known a priori. Since the
theory developed in our work also identifies the relative importance of each
transmitted waveform in the reconstruction, it is possible to use T to select an
appropriate subset of N individual waveforms for optimal imaging of the target
in less than T seconds.

3.B.1 Problem Formulation

Consider first i point reflector at a distance r(t0) from a monostatic radar
at time to. Let s(t) be the waveform transmitted by the radar. We will assume
here that the echo received by the radar at time I is given by

As(t - -(1)) (3. B.1)

where A is a constant determined by the reflection properties of the point target
and the propagation characteristics of the medium and r(t) is the total delay
incurred by the part of the waveform that arrivez at the radar at time t- Note
that 2

r(t) = -r(t - r(t)) (3.2)
c 2

where c is the velocity of propagation of the electromagnetic waves in the
medium.

It is c3r.venierit to express r(i) as a power series over the signal duration.
In particular, if the change in the velocity of the reflector over the illumination
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time (duration of s(t)) is negligible compared to c, then we find that [32]

2v(z/2)"r(t) = x + -4. - 2 (t -z) (3.B,3)

where z is an arbitrary reference time instant and v(z/2) is the velocity of the
point reflector at time z/2 along the line of sight. Note that it follows from
(3 B.2) that the range of the target at time t = z/2 is cz/2. Hence, the received
waveform at time I will have the form Af(y(t - z)) where y = (c - v(z/2))/(c +
v(z/2)). This is the exact broadband form of the echo rather than the usual
narrow band approximation used in the literature. This formulation of the echo
takes care of range-migration effects automatically.

Suppose now that the target consists of a continuum of point reflectors lo-
cated at various ranges, moving with different velocities with respect to the
radar and having different reflectivities. Assuming that reflection and propaga-
tion are linear and that all parts of the target are illuminated equally. the echo
e(t) due to the target will have the form

e(f) = dy dx D(x,y)s(y(t - x)), (3.B.4)

In the above equation D(xy) is the reflectivity of a point target located at
range cx/2 and moving with velocity (1 - y)c/(I + y) at time x/2 Since a
negative range is meaningless, D(z,y) = 0 for all z < 0. Our goal in the next
section will be to reconstruct the best approximation to D(z. y) by recording
the echoes due to a fixed number N of transmitted waveforms.

3.B.2 Approximation of a known a D(x, y) using a set of waveforms
and echoes

First observe that (3.B.4) has the same form as an inverse wavelet transform.
Specifically. if ,'(t) is a valid wavelet function then any square integrable signal
f(t) can be written as

f(t) = I dy dx F(x, y)v"yt'(y(t - x)) (3.B.5)

where Cv, is a constant that depends on t"(f) and F(z.y) is the continuous
wavelet transform of P(1) with respect to '(t). This observation seems to sug-
gest then that one can reconstruct D(zy) by transmitting a single valid wavelet
function t,(t) and computing the wavelet transform of the echo. Unfortunately.
as observed in [441 and [36], following such an approach simply yields the pro-
jection of D(x, y) onto the range of the wavelet transform with respect to t (f)

Clearly the problem that we are addressing involves reconstructing a 2-D
function from 1-D observations. Thus, in general, reconstructing an arbitrary
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D(z, y) will require transmitting and recording an infinite number of wave-
forms and echoes. Suppose on the other hand that we are restricted to us-
ing N or less waveforms. How can we optimize the choice of these waveforms
to get the most accurate approximation of D(z,y) in the norm jID(z,y)112 =

f0 dyf. dzID(z,y)j[? We will answer this question by first assuming that
D(z, y) is actually known. The answer that we obtain will then guide our choice
of transmitted waveforms for the actual case where D(z, y) is unknown.

By taking the Fourier transform of (3.B.4) we obtain

E(w) = 10 ( ,, y . (3.B.6)

In the above equation A(w, y) is the Fourier transform of D(z, y) with respect
to z, i.e.

A (w, y) = D(z, y)e--xdz. (3.B.7)

Define E+(,) = E(w) for w > 0 and E+6() = 0 otherwise. Similarly. let
E_(w) = E(w) for w < 0 and E.(M) = 0 otherwise Now let us change the
variable of integration by defining u = w/y. With this change of variable of
integration (3.B.6) yields the following two integrals

, UE+ (d) T(,,; U)SU)L(3.13,8)

and o du

E_(,w) = T_(;,u)S(u)-du (3.B.9)

In the above equations T+(w,u) = T(w,u) for a > 0 and T+(w,u) = 0 other-
wise. T_.(", u) = T(ý,. u) for .: < 0 and T+(.,u) = 0 otherwise and T(ý.u) =

A w/u). Note that T±"(., .) are kernels of two maps that take L2 (R±,du/jut)
into L 2(R±. d&-). If we assume that D(z, y) has finite energy, i.e., if

j dz I dyID(z,y) 2 < oc. (3.B.10)

then it may be shown that the operators corresponding to T±(., .) are compact
operators. Hence these operators admit a singular value decomposition. In par-
ticular, it follows that the best approximations to either T+(w,,u) or T_("',u)
using Af functions S±.(u), n = 1,M and their corresponding echoes (images
under T"+(.. .)) E.,(ý,') is obtained by choosing the functions S±.(u), n =1. M
to be the singular functions of T+(,', u) or T_(6, u) corresponding to their M
largest singular values. N3:e that since the singular functions S±.(u) of T±(-. -)
belong to L2 (R±, du/ju]) they are the Founcr transforms of valid warekt func.
tions. Specifically, we have

]d < oc (3.B1II)
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which is the admissibility condition for wavelet functions.
Hence, if D(z, y) is known, the best 2 norm approximation to it that uses N

waveforms and their corresponding echoes can be computed by choosing a set
of N waveforms from the set of 2N singular functions of T+(w, u) and T_ (w, u)
corresponding to their N largest singular values. The precise choice is made by
computing the reduction that will occur in the norm of the error by including
a particular singular function of T+(w, u) versus one of T._ (w, u). The singular
functions are considered in the order in which their corresponding singular values
appear when arranged in order of decreasing magnitude.

3.B.3 Reconstruction of an unknown D(z, y)

The results of the last section provide a general guideline for choosing N
waveforms for optimal reconstruction of a range-Doppler distribution D(z, V).
Specifically, the waveforms should be close approximations to the singular func-
tions of T+(w, u) and T_.(w, u) corresponding to their N largest singular values.
The problem of course is that D(z, y) is unknown.

It turns out that it is possible to find a set of functions that would act as ap-
proximate singular values for all kernels T+ (w, u) and T._ (w, u) that correspond
to finite support range-Dopple densities D(z, y). In particular, if the Fourier
transforms S,. (u) are chosen such that each S,, (ln(u)) is equal to a particular
translate and dilate of the same discrete wavelet function with a large number of
vanishing moments then they will provide a good approximation to the singular
functions of all kernels T+((w, u) and T_(,w, u) that correspond to finite support
range-Dopple densities D(z, y) [58].

We still need to impose an ordering on these approximations to the singular
functions of the kernels T+(uw, u) and T_.(w, u) that we expect to encounter.
Specifically, we are really interested in approximating the singular functions
of T+(w,u) and T_(w,u) corresponding to their largest singular values. This
can again be done using the fact that D(z, y) has a finite support in the (x, y)
plane. The finite support constraint implies that A(w, y) is a smooth function
in w (its Fourier transform with respect to w is a "low pass" function) and has a
finite support in the y variable. This fact enables us to predict the asymptotic
behavior of the wavelet coefficients in a 2-D discrete wavelet decomposition of
either T+(w,u) or T_.(w, u) [10].

More generally, if we can collect data corresponding to several representa-
tive D(z, y) profiles we may use the following two step adaptive range-Doppler
imaging scheme. In the first step we classify the available D(z, y) densities into
several classes using a clustering algorithm based on a norm criterion, e.g. the
2- norm. Next, for each class we compute a set of N waveforms that act as
approximations to the singular functions corresponding to the largest singular
values of the kernels T+(w, u) and T_(w, u) in this class. We also construct a
set of N fixed waveforms to be used in a pre-imaging classification step. We
will refer to these waveforms as the classification waveforms. This first step is
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Figure 12: Actual D(z, y)

done off-line.
The second step is performed on line during actual imaging of a target. The

radar first transmits the classification waveforms. A vector quantization rou-
tine then uses the approximate D(r, y) reconstructed using these waveforms to
determine the class of range-Doppler densities to which the observed D(z,y)
belongs. The radar finally transmits the appropriate set of waveforms corre-
sponding to the identified class to obtain a higher resolution image of D(z, y).
The details of this procedure are given in [58).

3.B.4 A Simulation Example

Let us illustrate the above technique with a simple example. Assume that it
is desired to image the distribution D(z, y) shown in Fig. 12. This distribution
consists of two 2-D Gaussian functions. The optimal reconstructions that we
can obtain by sending one or two properly chosen wavelets are shown in Figs.
13 and 14. Note that Fig. 14 is essentially D(z, y). This is the case because
D(z, y) is actually a rank 2 kernel. Hence, it can be reconstructed exactly using
two properly chosen waveforms.

42



Figure 13: Reconstructed D(z,y) Using 1 Wavelet.

Figure 14: Reconstructed D(z, y) Using 2 wavelets.
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3.C Signal reconstruction from an Arbitrary Sampling of
Its Dyadic Wavelet Transform

Wavelet transform maxima and zero-crossings signal representations have
been investigated in both image and speech processing areas. Specifically, such
representations can be used for image edge detection and multiscale image edge
representations [40, 38, 39], speech pitch detection [30], and auditory represen-
tation of acoustic signals [71].

It has been conjectured that such a signal representation is complete (or
unique) [11, 40, 38, 39]. However, recently in [3, 4] some counter examples have
been given to show the non-completeness of such representations. In particular,
a necessary and sufficient condition of the completeness has also been given in
[3, 4]. Unfortunately, checking this condition involves determining the rank of
a matrix that can have a potentially large size. Therefore, this condition is not
practical.

In our work, we gave a necessary and sufficient condition for the completeness
of the discrete dyadic wavelet transform extrema (or zero- crossing) represen-
tation for discrete finite data length signals. These signals are most commonly
used in practice. We showed that the uniqueness of such a representation de-
pends only on the locations of the wavelet transform extrema (local maxima
and minima). Hence, our results apply as well to any arbitrary sampling of a
redundant dyadic wavelet transform. Furthermore, we explained why the con-
clusions in [1,2,3] hold for most of the signals except for some extreme cases like
those in [d,51. We discussed the numerical stability of sampled dyadic wavelet
representations. Stability is important in the sense that a numerically unstable
representation is useless from a practical point of view. Finally, we described
a fast Fourier transform (FFT) based algorithm for recovering a signal from a
complete arbitrary sampling of its dyadic wavelet transform.

3.C.1 Dyadic Wavelet transforms and Sampled Dyadic Wavelet trans-
forms

A fast dyadic discrete wavelet transform for the discrete signal f(n) is com-
puted by passing f(n) through a cascade of filter banks that consist of low-pass
and high-pass filters H,(w) = Ho(2jw) and Gj(w) = Go(2jw) (c.f. Fig. 15).
The decomposition is essentially similar to a discrete orthogonal wavelet de-
composition in which all decimators have been moved to the last stage and then
eliminated. The prototype filters Ho(w) and Go(w) must satisfy certain con-
ditions. In particular, Ho(w) is a low-pass filter with a zero of some order at
S= 7r, and Go(,w) is a high-pass filter with a zero of same order at ,ý = 0. and
JHj(w)J2 + IGj(w)I 2 = 1. Furthermore, HO(w) and Go(";) have no other zero on
the unit circle.

It is obvious that this decomposition is redundant. For example, if we choose

44



Ho H, H1 -j

f sSfn�S2f- - Sj1(n)

Wjf(n) W 2f(n) Wjf(n)

Figure 15: A Fast Dyadic Wavelet Transform.

the filters Hj and Gj such that they form a perfect reconstruction filter bank
then we can decimate the filter outputs by a factor of two with no loss of
information. The resulting decomposition is then called an orthonormal wavelet
transform. Another approach given by Mallat [40, 38, 39] is to keep only the
locations and the values of the local extrema or zero-crossings of Wjf(n) of the
wavelet decompositions. We call such a signal representation a partial dyadic
wavelet transform (PDWT) signal representation.

In our work, we analyzed the redundant wavelet transform of a finite size
sequence f(n). As is customarily done in this case, we assumed that the given
sequence corresponds to a periodic signal with a period equal to the length of
the given sequence. With this assumption, filtering signal f(n) with H,(w) and
Gj(w) is equivalent to multiplying an N x 1 vector f that consists of the N
sample values of f(n)) with circulant matrices Nj and 9j of dimension N x N.

Specifically, denote by W~f the value of the discrete wavelet decomposition
at scale 2j. The N x 1 dyadic wavelet transform vector W,! is obtained by
multiplying the N x 1 vector f of signal samples by the circulant matrix.

Wj: = RfO' '7-/5-2{7i- I. (3.C.1)

The smoothed version at scale 2' is Sj. It is equal to the product matrix,

SJf = 7to? 1 ... Nt,- 1 f. (3.C.2)

The properties of Hj () and G(w) imply that the rank of Si is not N. Hence
it is not possible to reconstruct Pfrom $ij The question then is: "Is it possible
to reconstruct ffrom a PDWT?" To answer this question, we write the PDWT
of the signal representation as wi. (3.C.3)

Here the matrix W is called partial dyadic wavelet transform (PDWT) matrix
and is defined as,

W= [STIWf, A T4, 1T (3.C.4)

The vectors p1 = [p1(i)] consist of the indices of the samples of 4W-f that have
been retained (e.g. the extrema locations mi, or zero-crossing locations z.) at
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scale j. The matrices Wj,p, consist of the rows of W, corresponding to the
locations in pj.

The advantage ot the above matrix form is that the PDWT problem cai. be
directly studied by examining the matrix W. For example, the representation is
complete, (that is, there exist no other signals f with the same representation
Wfhj if and only if rank of matrix W is N.

3.C.2 Completeness and stability of a Sampled Dyadic Wavelet trans-
form

As noted above, the PDWT signal representation is said to be complete (or
unique) if and only if there exist no other signal g other than fsuch that Wg =
Wf. This completeness (or uniqueness) has been conjectured in [40, 38, 39]
because no counter examples had been found. From our discussions in the
previous section, the completeness of PDWT can be describe by the following
lemma,

Lemma 1 The PDIWTsignal representation is complete if and only if rank(OV)
-- N.

The proof to this lemma is obvious. Notice that a similar result has been
derived in [3, 4]. As mentioned above, it is rather difficult to check the com-
pleteness of a PDWT using this Lemma because the size of W can be large.

Using the above lemma and the fact that the eigenvalues of an N x N
circulant matrix C are the discrete Fourier transform coefficients of elements of
C and the corresponding eigenvectors are the columns of the N x N Fourier
transform matrix, we proved the following completeness theorem.

Theorem 1 The PDWT representation is complete if and only if

J
S>2J - 1. (3. C 5)

j=1

where

(the number of distnct values pj(i) mod 2J
for 1 <j<5J- I 3C6the number of distinct values pj(i) mod 2(J-) (3.C.6)

for j = J

We outline here the main argument used to prove this result. Since Sj(w) =
Ho(w)... Hj-_.w) has zeros of someorder only atw = 7r,±-,...,--,

rank(Sj) = N - 2" + 1. (3-C-7)
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The eigenvectors corresponding to the zero eigenvalues ofS , would be f(- ), f (± "I
where the N x I Fourier vector Y(n) is defined as

?(n) = [1,,e *,. e.(3..8)

Since the information in fthat was lost in Sjf should be present in

w,= [w[, I-.. I Wj,] , (3.C.9)

the matrix,

should have rank 2j - 1 to guarantee completeness. This argument serves as
the basis of the proof of the above Theorem. The detailed proof can be found
in [76].

The above Theorem is important because it provides us with a simple way
of checking the completeness of any sampled dyadic wavelet representation. In
particular, our test does not involve computing the rank of any matrix.

Up to this point, we discussed the signal compensation of the smoothed signal
Sjf corresponding to the zero eigenvalues of Si. To guarantee the numerical
stability of PDWT representation, we need to consider also the eigenvalues of
5j of negligible magnitude. By slightly modifying the above theorem, one can
derive a similar condition on the number and location of the samples that are
retained to guarantee a unique and numerically well behaved representation.
We refer the interested reader to [76] for more details.

We give here a simulation result. Fig. 16 shows a wavelet ;,(x) and its
scaling function O(x). Fig. 17 shows a signal I equal to a row in an image and
its wavelet transform up to scale J = 4 by using the wavelet given in Fig. 16.
Fig. 18 shows the maxima representation of the wavelet transform in Fig. 17.
WN~e can examine the sampling locations of local maxima using the theorem and
conclude that the representation is complete. Next, we detect the "edge" of the
image row, that is, keep only the samples corresponding to the same maxima
locations at all scales as shown in Fig. 19. Using the completeness theorem, we
find that the representation is still complete.

3.C.3 Signal Reconstruction from a Sampled Dyadic Wavelet trans-
form

The problem now becomes how to reconstruct the original signal f from the
PDWVT representstion W. The above discussion gives rise to an FFT based re-
construction a&gorithrn,. In particular, the original signal fcan be reconstructed
as follows from a PDWT

f=wtwf, (3.=.11)
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(Z)

Figure 16: Scaling Function O(z) and Wavelet ¢t(x).

In the above equation where W1 denotes the pseudo inverse of W. Typically,
the above equation will be difficult to be implement because of the possibly
large size of W.

Instead of using (3.C.11) we may proceed as follows. First, we recover the
information about fthat is in Sjf Specifically, we construct an approximation
jto fas

f, = Q1 diag{V(O),...,•Sj(N - 1)}QSJ (3.C. 12)

In the above equation Q denotes the N x N Fourier transform matrix and QH
is its complex conjugate transpose. The diagonal entries Sj(n) are given by

{ (n) if SJ(n) 90 (3.C.13)
0 otherwise.

The difference .L between j and f, is then finally obtained as

.4 = F(WpF)0(Wp(f- f)) (3.C.14)

where

and At denotes the pseudo inverse of A. The advantage of this representation
is that it involves solving for 2J- 1 - I unknowns only.
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Figure 17: Dyadic Wavelet Transform up to Scale J=4.
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Figure 18: Wavelet Transform Extrema Representation ofJ
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Figure 19: A More Efficient Sampled Wavelet 'Tansform Representation of f.
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3D Adaptive wavelet Representations for Low Bit Rate
High Quality Audio Coding

In many application, such as the design of multimedia workstations and
high quality audio transmission and storage the goal is to achieve transparent
coding of hi-fidelity audio signals at bit rate below 64 kb/s. Typically, the
quality of Compact Disk(CD) signals is used as the standard for high fidelity.
These signals are characterized by a high bandwidth (sampling rate of 44.1kHz),
and a high quality (16 bits/sample PCM coding), resulting in a high bit rate
of 705 kb/s. Reducing this requirement while maintaining a near transparent
quality is, therefore, crucial in the above applications.

In other applications the objective is to synthesize music signals at or below
10 kb/s. The transform and subband coders have generally been found to be
unsuitable at these rates and the low bit rate speech coders are almost invariably
based on the Linear Predictive Coding (LPC) algorithms or its extensions. Since
the LPC model relies on the human voice production mechanism, it may not
be suitable for music and other non-speech sounds. (Note that. some studies
suggest that Multi Pulse LPC may be viable for this task [50].)

In general, an audio coding scheme must exploit irrelevancies (which result
from the masking properties of human hearing) and statistical redundancies in
the signal. The currently known methods for hi-fi audio compression [66].[291,
generally concentrate on exploiting the masking properties by looking at a suit-
able transform or subband components of the signal. We proposed an audio
coder that attempts to maximize the compression by utilizing both the above
sources of redundancies in a signal. To exploit masking a discrete wavelet trans-
form (DWT) based Adaptive Transform Coding method is employed. The DWT
is attractive for audio compression because it acts like a Karhunen Loeve Trans-
form (KLT) for a large class of signals (including some non-stationary signals)
[61]. Furthermore, it offers the flexibility of choosing a basis matched to the
given data. The proposed coder incorporates an optimal wavelet basis search
procedure to utilize this flexibility. The DWT part of the coder builds on our
previous work [51]. With recent improvements, it is capable of maintaining a
near transparent quality at approximately 64 kb/s.

To eliminate the statistical redundancies in the signal. the DWT encoder is
augmented by a first stage of dynamic dictionary based encoding. Experiments
with several audio samples suggest that this results in a significant coding gain.
The overall two-stage coder offers a solution to first of the audio compression
problems noted above; i.e., it allows transparent coding of CD quality audio
signals at rates below 64 kb/s. Preliminary studies suggest that it is also a
viable approach for the low bit rate synthesis of music signals at about 10 kb/s.

It should also be noted that the decoding part of this algorithm has been
implemented in real time on a Texas Instruments, TMS32OC31 chip. The coder
complexity is still high, even though signiificant speedup in the wavelet adapta-
tion algorithm has been achieved. Also, the coder in its present form leads to a
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variable data rate. The implementation of our procedure may therefore require
the use of a buffering scheme in some practical applications.

3.D.1 Particulars Of The Audio Compression Method

The overall coding algorithm is illustrated in Figure 20. In what follows,
we assume that the incoming stream of audio data has been sampled at 44.1
kHz. It is divided into short frames. For each of these frames a dictionary entry
that is perceptually closest to the signal is identified. The chosen entry is 0 an
subtracted from the signal to form an error vector. Both the signal and the
error are encoded using an optimal WT based approach, and shorter of the two
codes is transmitted to the receiver.

The audio coder uses two different analysis frame sizes of 1024 and 2048
samples (46 and 23 ms). The ends of these frames are tapered by the square-
root of a Hanning window, the resulting overlap corresponds to an oversampling
ratio of 6.67%. The longer frame results in lower bit rates and is. therefore.
employed most of the time. The shorter frame length, on the other hand. is
used for frames which are identified to be susceptible to the "pre-echo" effect.
based on an "energy-entropy" criterion described in a later section. It may be
noted that neither of the two frame sizes provide the time resolution determined
by backward masking of sharp trans:-nts. i.e., 4 ms. But. the proposed coder
contains additional safeguards against pre-echos and these are also described in
a later section.

3.D.2 Discrete Wavelet Transformation of Audio Frames

The classical formulation of D\VT leads to "octave bandwidth" filterbanks.
i.e., filter bandwidth is proportionately higher for the high frequency bands.
Frequency resolution of such filterbanks does not quite match the frequency
dependent resolution required for full exploitation of simultaneous masking (i.e..
the "critical band" structure [29]). To alleviate this problem, we used the wave
packet representations [14]. In such a representation. the low and high frequency
bands are further split. This representation retains twe flexibility offered by the
DWT in terms of choosing an optimal basis. The wave-packets may be used to
form any arbitrary binary tree structured decomposition. In our work we use a
tree containing a maximum of 29 bands that closely res,.i iles the critical band
scale.

3.D.3 Perceptual Masking Constraint in the Wavelet Transform Do-
main

Perceptual masking or simultaneous masking is a phenomenon whereby a
strong signal masks a simultaneously occuring weak (noise) signal. The impor-
tance of masking in a coding system is that a perceptually transparent quality
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Figure 20: Block diagram of the proposed coder

is maintained as far as the power of reconstruction error in each of the critical
bands is below a signal dependent threshold. In our computations of the noise
masking threshold, we use the following particulars: FFT analysis for windowed
signal frame, assumption of additivity for the masked power, and a model for
inter/intra frequency masking proposed in [66]. Additionally, the threshold is
forced to be constant for each of the wavelet (critical) bands.

Under the assumption that the transform coder "whitens" the quantization
error (which turns out to be the case), the threshold of masking may be enforced
by

e4qRQeq _ D (3.D.1)

where eq is the error vector in the quantization of DWT coefficients, D is a
threshold, and RQ is a positive definite matrix which depends on the choice of
the wavelet. In general this matrix is not diagonal. However, in [53] we show
that if the analyzing wavelet has a large number of vanishing moments then
RQ is very close to being diagonal. Then the error criterion (1) reduces to

ZcksE)ek 5 D (3.D-2)
k

where E is a vector of parameters that identifies the selected wavelet, ek is the
error in the k`h WT coefficient, and c40(0) is the kth diagonal entry of RQ.
The WT domain threshold ckk(E) remains constant for a particular subband
[53].
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3.D.4 Audio Data Compression By Wavelet Optimization

In our code, an optimal wavelet is identified for each frame of the audio
signal (N samples) and the bits are optimally allocated among the different WT
coefficients to minimize the overall bit rate requirement. In [53], we show that
for a particular choice of a wavelet, the minimum number of bits for quantizing
the WT coefficient is given by (assuming a large number of vanishing moments
for the wavelet),

S(ofckk(O) (3.D.3)

2k

where ok is the peak value of the kPh coefficient (if a uniform adaptive quantizer
is employed), and the constant C = Q (c is a "safety factor" close to 1).
The A9" term in the above summation also gives the optimum bit allocation,
R0,P', for the kth WT coefficient. For a particular choice of a wavelet, the bit
rate requirement may then be computed directly from the transform coefficients
using the above equation.

If an attempt is made to identify the best wavelet by searching in the pa-
rameter space, the overall search complexity can be extremely high. In [53],
we conclude that for longer scaling sequences (of size K), the search may be
limited to the set of wavelets with maximal number (K/2) of vanishing mo-
ments, with near optimal results. The families of K coefficient K/2 vanishing
moment wavelets are generated using the results in (17] (e.g., for K = 20, there
are exactly 1024 such wavelets). Furthermore, a fast search procedure may be
developed using the fact that all K coefficient K/2 vanishing moment wavelets
result in filter banks with identical magnitude response; these differ only in
terms of their phase responses (delay). The fast algorithm significantly reduces
the complexity of search by limiting the optimization to the last stage of the
wavelet decomposition tree.

The information that needs to be transmitted to the receiver to recompute
bit allocation is {ak,ckk)-'1=', and the choice of the wavelet G. It was noted
earlier that only 29 values of ckk need to be transmitted. these are quantized
uniformly on a log scale using 6 bits and a resolution of 1.3 dB. Transmitting
the peak values ak too frequently leads to excessive side information. In our
work, updating these values once -very 8 transform coefficients was found to
be a suitable compromise. The peak values are quantized using a simple mean-
difference quantizer at 2 bits/value. Identifying the best. maxinal vanishing
moment wavelet requires only a small number of bits per frame. The overall side-
information for the WT based coder requires approximately 0.3 bits/sample.

3.D.5 Dynamic Dictionary Based Encoding

Although the wavelet based coding method is able to exploit the masking
characteristics, further reduction in the bit rate is possible by getting rid of
the statistical redundancies. One possible way to do that is to use predictive
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coding (differential PCM). However, this method has generally been found to
be unsuitable for maintaining transparent quality across a wide range of hi-fi
music signals. Another possibility is to use vector quantization (VQ) [24]. It
has been shown that VQ coders are theoretically superior in the sense that the
rate distortion bounds on the data rate are better achievable than with scalar
quantization. Still, VQ has found only a limited role in hi-fi audio coding because
of lingering doubts about its ability to ensure transparent quality. Significant
among the previous attempts towards using a VQ for audio compression is the
work by Chan and Gersho [12]. It employs a fixed multi-stage tree structured
codebook trained on DCT coefficients.

In our work, in an attempt to guarantee transparent quality for all type of
audio signals, we use a dynamic system as illustrated in Figure 1. It employs
an adaptive dictionary in a first stage of VQ for the audio waveform, At the
same time the difference between the audio waveform and the chosen dictionary
entry is also encoded using the wavelet based method discussed above. Using
this second coding stage allows us to use a dictionary of relatively small size
and rather simple methods for dictionary construction and update. However,
even under these conditions the use of VQ as a first stage results in significant
coding gain.

In Figure 20, the DWT encoding procedure for the residual remains exactly
the same as the one for the signal itself (as described above). Moreover, per-
ceptual threshold for the coding of the difference signal is also the same as the
perceptual threshold of the signal itself. This is because the coding errors in x
are exactly equal to the errors in the quantization of residual, d. On the other
hand, the dictionary encoding procedure works as follows. Each frame of audio
data is split into two halves (unless the frame length has already been halved for
pre-echo control). For either of the two half frames the dictionary is searched
for the best perceptual matches using a procedure described below. The best
entries are then subtracted from the respective halves of the signal x to form
the residual vector d.
Dynamic Dictionary Search

Given a normal frame length of N samples, the above discussion indicates that
the dictionary is used to encode vectors of N/2 samples. The dictionary entries.
however, are maintained as "meta vectors" of N samples each. To encode a
signal x we search through the dictionary to find an element ua which is closest
to x in terms of a "perceptual distance measure". This distance is computed
by executing the following three steps

1. Compute a sliding window correlation between x and y and find the lag
Li corresponding to the peak of the correlation function (0 < i < N/2)
Next, form a vector yo consisting of N/2 samples of p starting from lag
Li.

2. Estimate the time warping factor to normalize the time scale of of y, to
that of x (see below).
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3. Compute a frequency weighted error for the error vector e = x - yo
using the perceptual threshold computed from x. This error power is the
requisite perceptual distortion measure.

Step I and 2 above ensure a better perceptual match through an improved
time and scale alignment. The incorporation of these steps increases the effective
size of the dictionary significantly beyond its physical dimension.
Time Warp Factor Estimation

In the dictionary based encoding it is often useful to renormalize the time scale
of the dictionary entry to that of the signal. However, in the audio coder an
"exact characterization of a warping function is not an important issue (unlike the
speech/speaker recognition systems), since residuals are also being transmitted
simultaneously. Thus, it may be assumed that there is a constant time-warp
factor for the entire frame of audio data. In [53], we show that a warp factor a
that minimizes f[z(t) - y(at)l2 dt, may be estimated as

F= k[z(k) - y(k)].[y(k + 1) - y(k)] (3D-4)

rk k2fy(k + 1) - y(k)12

where -0.5 < y < 0.5, and a = I +
Dynamic Dictionary Update

An adaptive dictionary has previously been used in some applications, e.g., for
for image compression [22]. The dictionary update problem in the proposed
coder is somewhat different because dictionary entries consist of waveforms and
the vector sizes are relatively large making it impractical to collect several sam-
ples before executing an update step. Since the proposed encoder also encodes
the residual, we have so far been able to work with a simple dictionary update
procedure as follows. The minimum distance measure between x and perceptu-
ally closest entry into the dictionary is compared against a preselected threshold.
If it is below the threshold then the dictionary remains unchanged. otherwise
the decoded signal :k is used to update the dictionary using a Longest-Time-
Since-Use strategy. Several improved techniques for dictionary update in the
audio coder are currently under investigation. These are based on adaptive
filtering/multigrid adaptive filtering algorithms.

3.D.6 Adaptive Framing for Pre-echo Control

It was noted earlier that a longer analysis frame size of 2048 samples is desir-
able for lower bit rates. But, using a large frame size implies that reconstruction
errors are spread over the effective width of the window in time. The backward
masking of a'n impulse lasts about 4 ms and is not sufficient to mask the error
spectrum for the full duration of a longer frame. This leads to the pre-echo ef-
fect in the presence of a sudden increase (impulse) in the signal energy. To limit
pre-echos, the coder switches to a shorter frame size (1024 samples) whenever
presence of strong transients is detected based on an energy- entropy estimate
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(computed as follows). Each frame is divided into segments of J (J = 16 is a
suitable value at 44.1KHz) samples each. Signal energy, oi, is computed over
each of these segments and is normalized by the overall frame energy. We then
define energy-entropy as

l - 109og2 G7. (3.D.5)

This entropy measure falls sharply for segments with sudden bursts of energy.
An entropy value of 4.5 bits is used as a threshold for switching the frame size.

The shorter frame eliminates pre-echos to a significant extent. Further re-
duction in pre-echos is accomplished by utilizing the time varying signal energy
estimate available in the form of peak-values. These peak-values are used to
scale the WT domain masking threshold for the frames in which presence of
sharp transients is detected based on the above entropy criterion.

3.D.7 Experimental Results

The proposed audio coder was tested using a database of several audio samples
(castanets, piano, pop, drums, clarinet, etc.). For each sample a perceptually
transparent coding (at variable bit rates) was attempted. The bit rates in the
DWT based coder were found to be in the range of 0.8 - 1.2 bits/sample for
coding the transform coefficients. When a dynamic dictionary of 150 entries was
employed, the coefficients could be encoded at the rates of 0.6- 1.0 bits/samples.
Including the side information (about 0.3 bits/sample), these figures correspond
to bit rates close to 64 kb/s or below for the DWT based method alone and in
the range of 48 - 64 kb/s with the dictionary encoding.

The subjective quality in "transparent" coding by the proposed coder was
assessed by comparing the quality of transcoded samples with that of MPEG
layer-2 coding [7] of the same samples. In listening tests, trained listeners were
unable to detect any difference between the original and the transcoded samples
(of the proposed coder). In the judgement of some listeners the quality of 64
kb/s wavelet coding was better than 128 kb/s MPEG layer-2 coding.

A detailed description of our tests and test results may be found in [53).
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